References
[1]
K.
Aas, M. Jullum, and A. Løland, “Explaining individual predictions
when features are dependent: More accurate approximations
to Shapley values,” Artificial
Intelligence, vol. 298, p. 103502, Sep. 2021, doi: 10.1016/j.artint.2021.103502.
[2]
A.
Adadi and M. Berrada, “Peeking Inside the
Black-Box: A Survey on Explainable
Artificial Intelligence (XAI),” IEEE
Access, vol. 6, pp. 52138–52160, 2018, doi: 10.1109/ACCESS.2018.2870052.
[3]
J.
Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim,
“Sanity checks for saliency maps,” Advances in neural
information processing systems, vol. 31, 2018, doi: 10.1609/aaai.v34i04.6064.
[4]
C.
Anderson, “The end of theory: The data deluge makes the scientific
method obsolete,” Wired magazine, vol. 16, no. 7, pp.
16–07, 2008.
[5]
M.
Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz, “Invariant
risk minimization,” arXiv preprint arXiv:1907.02893,
2019.
[6]
L.
Bottou, “Large-Scale Machine
Learning with Stochastic Gradient
Descent,” in Proceedings of
COMPSTAT’2010, Y. Lechevallier and G. Saporta, Eds.,
Heidelberg: Physica-Verlag HD, 2010, pp. 177–186. doi: 10.1007/978-3-7908-2604-3_16.
[7]
S.
Alemohammad et al., “Self-consuming generative models go
mad,” arXiv preprint arXiv:2307.01850, 2023.
[8]
Y.
Alimohamadi, M. Sepandi, M. Taghdir, and H. Hosamirudsari,
“Determine the most common clinical symptoms in COVID-19 patients:
A systematic review and meta-analysis,” Journal of preventive
medicine and hygiene, vol. 61, no. 3, p. E304, 2020, doi: 10.15167/2421-4248/jpmh2020.61.3.1530.
[9]
“AlphaFold DB website.” 2023.
Available: https://alphafold.ebi.ac.uk/
[10]
A.
Antoniou, A. Storkey, and H. Edwards, “Data augmentation
generative adversarial networks,” arXiv preprint
arXiv:1711.04340, 2017.
[11]
S.
Athey, J. Tibshirani, and S. Wager, “Generalized random
forests,” 2019, doi: 10.1214/18-aos1709.
[12]
D.
W. Apley and J. Zhu, “Visualizing the Effects of
Predictor Variables in Black Box Supervised Learning
Models,” Journal of the Royal Statistical Society
Series B: Statistical Methodology, vol. 82, no. 4, pp. 1059–1086,
Sep. 2020, doi: 10.1111/rssb.12377.
[13]
B.
Arnold et al., “The turing way: A handbook for
reproducible data science,” Zenodo, 2019.
[14]
F.
Ayoub, T. Sato, and A. Sakuraba, “Football and COVID-19 risk:
Correlation is not causation,” Clinical Microbiology and
Infection, vol. 27, no. 2, pp. 291–292, 2021, doi: 10.1016/j.cmi.2020.08.034
.
[15]
E.
Barnard and L. Wessels, “Extrapolation and interpolation in neural
network classifiers,” IEEE Control Systems Magazine,
vol. 12, no. 5, pp. 50–53, 1992, doi: 10.1109/37.158898.
[16]
P.
L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler, “Benign
Overfitting in Linear
Regression,” Proceedings of the National Academy
of Sciences, vol. 117, no. 48, pp. 30063–30070, Dec. 2020, doi: 10.1073/pnas.1907378117.
[17]
R.
Balestriero, J. Pesenti, and Y. LeCun, “Learning in high dimension
always amounts to extrapolation,” arXiv preprint
arXiv:2110.09485, 2021.
[18]
B.
Basso and L. Liu, “Seasonal crop yield forecast:
Methods, applications, and accuracies,” in
Advances in Agronomy, vol. 154,
Elsevier, 2019, pp. 201–255. doi: 10.1016/bs.agron.2018.11.002.
[19]
S.
Bates, T. Hastie, and R. Tibshirani, “Cross-validation: What does
it estimate and how well does it do it?” Journal of the
American Statistical Association, pp. 1–12, 2023, doi: 10.1080/01621459.2023.2197686.
[20]
S.
Beckers and J. Vennekens, “A principled approach to defining
actual causation,” Synthese, vol. 195, no. 2, pp.
835–862, 2018, doi: 10.1007/s11229-016-1247-1.
[21]
S.
Beckers and J. Y. Halpern, “Abstracting causal models,” in
Proceedings of the aaai conference on artificial intelligence,
2019, pp. 2678–2685. doi: 10.1609/aaai.v33i01.33012678.
[22]
E.
Begoli, T. Bhattacharya, and D. Kusnezov, “The need for
uncertainty quantification in machine-assisted medical decision
making,” Nature Machine Intelligence, vol. 1, no. 1, pp.
20–23, 2019, doi: 10.1038/s42256-018-0004-1.
[23]
P.
W. Battaglia et al., “Relational inductive biases, deep
learning, and graph networks,” arXiv preprint
arXiv:1806.01261, 2018.
[24]
M.
Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern
machine-learning practice and the classical bias–variance
trade-off,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 116, no. 32, pp. 15849–15854,
Aug. 2019, doi: 10.1073/pnas.1903070116.
[25]
Y.
Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828,
2013, doi: 10.1109/TPAMI.2013.50.
[26]
S.
Bird, “NLTK: The natural language toolkit,” in
Proceedings of the COLING/ACL 2006 interactive presentation
sessions, 2006, pp. 69–72. doi: 10.3115/1225403.1225421.
[27]
M.
D. Bloice, C. Stocker, and A. Holzinger, “Augmentor: An image
augmentation library for machine learning,” Journal of Open
Source Software, vol. 2, no. 19, p. 432, 2017, doi: 10.21105/joss.00432.
[28]
L.
Breiman, Classification and Regression
Trees. New York: Routledge, 2017. doi: 10.1201/9781315139470.
[29]
L.
Breiman, “Random Forests,” Machine
Learning, vol. 45, no. 1, pp. 5–32, Oct. 2001, doi: 10.1023/A:1010933404324.
[30]
“The California
Almond.” Accessed: Feb. 16, 2024. [Online].
Available: https://www.waterfordnut.com/almond.html
[31]
D.
Carpentras, “We urgently need a culture of
multi-operationalization in psychological research,”
Communications Psychology, vol. 2, no. 1, p. 32, 2024.
[32]
R.
Chalapathy and S. Chawla, “Deep learning for anomaly detection: A
survey,” arXiv preprint arXiv:1901.03407, 2019.
[33]
G.
Chandrashekar and F. Sahin, “A survey on feature selection
methods,” Computers & electrical engineering, vol.
40, no. 1, pp. 16–28, 2014, doi: 10.1016/j.compeleceng.2013.11.024.
[34]
K.
Chasalow and K. Levy, “Representativeness in
Statistics, Politics, and Machine
Learning,” in Proceedings of the 2021
ACM Conference on Fairness,
Accountability, and Transparency, in
FAccT ’21. New York, NY, USA: Association for Computing
Machinery, Mar. 2021, pp. 77–89. doi: 10.1145/3442188.3445872.
[35]
P.
Chattopadhyay, R. Vedantam, R. R. Selvaraju, D. Batra, and D. Parikh,
“Counting everyday objects in everyday scenes,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 1135–1144. doi: 10.1109/cvpr.2017.471.
[36]
V.
Chernozhukov et al., “Double/debiased machine learning
for treatment and structural parameters.” Oxford University Press
Oxford, UK, 2018. doi: 10.1111/ectj.12097.
[37]
N.
Chomsky, I. Roberts, and J. Watumull, “Noam chomsky: The false
promise of ChatGPT,” The New York Times, vol. 8,
2023.
[38]
G.
Ciravegna, F. Precioso, A. Betti, K. Mottin, and M. Gori,
“Knowledge-driven active learning,” in Joint european
conference on machine learning and knowledge discovery in
databases, Springer, 2023, pp. 38–54. doi: 10.1007/978-3-031-43412-9_3.
[39]
L.
H. Clemmensen and R. D. Kjærsgaard, “Data
Representativity for Machine
Learning and AI Systems.”
arXiv, Feb. 2023. Accessed: Feb. 07, 2024. [Online]. Available: http://arxiv.org/abs/2203.04706
[40]
G.
S. Collins et al., “TRIPOD+AI
statement: Updated guidance for reporting clinical prediction models
that use regression or machine learning methods,” BMJ
(Clinical research ed.), vol. 385, 2024, doi: 10.1136/bmj-2023-078378.
[41]
I.
C. Covert, S. Lundberg, and S.-I. Lee, “Understanding global
feature contributions with additive importance measures,” in
Proceedings of the 34th International Conference on
Neural Information Processing Systems, in
NIPS’20. Red Hook, NY, USA: Curran
Associates Inc., Dec. 2020, pp. 17212–17223.
[42]
G.
Corso, H. Stark, S. Jegelka, T. Jaakkola, and R. Barzilay, “Graph
neural networks,” Nature Reviews Methods Primers, vol.
4, no. 1, p. 17, 2024.
[43]
K.
Cranmer, J. Brehmer, and G. Louppe, “The frontier of
simulation-based inference,” Proceedings of the National
Academy of Sciences, vol. 117, no. 48, pp. 30055–30062, 2020, doi:
10.1073/pnas.1912789117.
[44]
G.
Cybenko, “Approximation by superpositions of a sigmoidal
function,” Mathematics of control, signals and systems,
vol. 2, no. 4, pp. 303–314, 1989, doi: 10.1007/BF02551274.
[45]
A.
Curth, A. Jeffares, and M. van der Schaar, “A u-turn on double
descent: Rethinking parameter counting in statistical learning,”
Advances in Neural Information Processing Systems, vol. 36,
2024.
[46]
O.
D’Ecclesiis et al., “Vitamin d and SARS-CoV2 infection,
severity and mortality: A systematic review and meta-analysis,”
PLoS One, vol. 17, no. 7, p. e0268396, 2022, doi: 10.1371/journal.pone.0268396.
[47]
S.
Dandl, “Causality concepts in machine learning: Heterogeneous
treatment effect estimation with machine learning & model
interpretation with counterfactual and semi-factual
explanations,” PhD thesis, lmu, 2023. doi: 10.5282/edoc.32947.
[48]
T.
Danka and P. Horvath, “modAL: A modular active learning framework
for python,” arXiv preprint arXiv:1805.00979,
2018.
[49]
H.
W. De Regt, “Understanding, values, and the aims of
science,” Philosophy of Science, vol. 87, no. 5, pp.
921–932, 2020, doi: 10.1086/710520.
[50]
B.
Dennis, J. M. Ponciano, M. L. Taper, and S. R. Lele, “Errors in
statistical inference under model misspecification: Evidence, hypothesis
testing, and AIC,” Frontiers in Ecology and Evolution,
vol. 7, p. 372, 2019, doi: 10.3389/fevo.2019.00372.
[51]
T.
Denouden, R. Salay, K. Czarnecki, V. Abdelzad, B. Phan, and S. Vernekar,
“Improving reconstruction autoencoder out-of-distribution
detection with mahalanobis distance,” arXiv preprint
arXiv:1812.02765, 2018.
[52]
A.
Diamantopoulos, P. Riefler, and K. P. Roth, “Advancing formative
measurement models,” Journal of business research, vol.
61, no. 12, pp. 1203–1218, 2008, doi: 10.1016/j.jbusres.2008.01.009.
[53]
T.
J. Diciccio and J. P. Romano, “A review of bootstrap confidence
intervals,” Journal of the Royal Statistical Society Series
B: Statistical Methodology, vol. 50, no. 3, pp. 338–354,
1988.
[54]
P.
Domingos, “A unified bias-variance decomposition,” in
Proceedings of 17th international conference on machine
learning, Morgan Kaufmann Stanford, 2000, pp. 231–238.
[55]
A.
Sharma and E. Kiciman, “DoWhy: An end-to-end library for causal
inference,” arXiv preprint arXiv:2011.04216, 2020.
[56]
F.
Doshi-Velez and B. Kim, “Towards A Rigorous Science
of Interpretable Machine Learning.”
arXiv, Mar. 2017. Accessed: Dec. 01, 2023. [Online].
Available: http://arxiv.org/abs/1702.08608
[57]
Bach, V. Chernozhukov, M. S. Kurz, and M.
Spindler, “DoubleML – An object-oriented
implementation of double machine learning in
Python,” Journal of Machine Learning
Research, vol. 23, no. 53, pp. 1–6, 2022, doi: 10.18637/jss.v108.i03.
[58]
Bach, V. Chernozhukov, M. S. Kurz, and M.
Spindler, “DoubleML – An object-oriented
implementation of double machine learning in R.”
2021. doi: 10.32614/cran.package.doubleml.
[59]
H.
E. Douglas, “Reintroducing prediction to explanation,”
Philosophy of Science, vol. 76, no. 4, pp. 444–463, 2009, doi:
10.1086/648111.
[60]
F.
Eberhardt, C. Glymour, and R. Scheines, “On the number of
experiments sufficient and in the worst case necessary to identify all
causal relations among n variables,” in Proceedings of the
twenty-first conference on uncertainty in artificial intelligence,
in UAI’05. Arlington, Virginia, USA: AUAI Press, 2005, pp.
178–184.
[61]
J.
Earman, “Bayes or bust? A critical examination of bayesian
confirmation theory.” MIT Press, 1992.
[62]
J.
Ellenberg, How not to be wrong: The hidden maths of everyday
life. Penguin UK, 2014.
[63]
B.
J. Erickson, P. Korfiatis, Z. Akkus, and T. L. Kline, “Machine
learning for medical imaging,” Radiographics, vol. 37,
no. 2, pp. 505–515, 2017, doi: 10.1148/rg.2017160130.
[64]
S.
Feng et al., “A survey of data augmentation approaches
for NLP,” in Findings of the association for computational
linguistics: ACL-IJCNLP 2021, Association for Computational
Linguistics, 2021. doi: 10.18653/v1/2021.findings-acl.84.
[65]
A.
Fisher, C. Rudin, and F. Dominici, “All Models are
Wrong, but Many are Useful:
Learning a Variable’s Importance
by Studying an Entire Class of
Prediction Models
Simultaneously,” Journal of machine learning
research : JMLR, vol. 20, p. 177, 2019, Accessed: Jan. 16, 2024.
[Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323609/
[66]
A.
Fischer, “Resistance of children to covid-19. how?”
Mucosal Immunology, vol. 13, no. 4, pp. 563–565, 2020, doi: 10.1038/s41385-020-0303-9.
[67]
S.
W. Fleming, V. V. Vesselinov, and A. G. Goodbody, “Augmenting
geophysical interpretation of data-driven operational water supply
forecast modeling for a western US river using a hybrid machine learning
approach,” Journal of Hydrology, vol. 597, p. 126327,
2021.
[68]
M.
Flora, C. Potvin, A. McGovern, and S. Handler, “Comparing
Explanation Methods for Traditional Machine Learning
Models Part 1: An Overview of Current
Methods and Quantifying Their Disagreement.”
arXiv, Nov. 2022. doi: 10.48550/arXiv.2211.08943.
[69]
J.
Frankle and M. Carbin, “The Lottery
Ticket Hypothesis: Finding
Sparse, Trainable Neural
Networks.” arXiv, Mar. 2019. doi: 10.48550/arXiv.1803.03635.
[70]
T.
Freiesleben, G. König, C. Molnar, and Á. Tejero-Cantero,
“Scientific inference with interpretable machine learning:
Analyzing models to learn about real-world phenomena,” Minds
and Machines, vol. 34, no. 3, p. 32, 2024, doi: 10.1007/s11023-024-09691-z.
[71]
T.
Freiesleben, “Artificial neural nets and the representation of
human concepts,” arXiv preprint arXiv:2312.05337, 2023,
doi: 10.48550/arXiv.2312.05337.
[72]
T.
Freiesleben and T. Grote, “Beyond generalization: A theory of
robustness in machine learning,” Synthese, vol. 202, no.
4, p. 109, 2023, doi: 10.1007/s11229-023-04334-9.
[73]
T.
Freiesleben, “The intriguing relation between counterfactual
explanations and adversarial examples,” Minds and
Machines, vol. 32, no. 1, pp. 77–109, 2022, doi: 10.1007/s11023-021-09580-9.
[74]
J.
H. Friedman, “Greedy function approximation: A
gradient boosting machine.” The Annals of Statistics,
vol. 29, no. 5, pp. 1189–1232, Oct. 2001, doi: 10.1214/aos/1013203451.
[75]
J.
H. Friedman and B. E. Popescu, “Predictive Learning
via Rule Ensembles,” The Annals of Applied
Statistics, vol. 2, no. 3, pp. 916–954, 2008, doi: 10.1214/07-AOAS148.
[76]
K.
Fukumizu, A. Gretton, X. Sun, and B. Schölkopf, “Kernel measures
of conditional dependence,” Advances in neural information
processing systems, vol. 20, 2007.
[77]
Y.
Gal, “Uncertainty in deep learning,” 2016.
[78]
Y.
Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in
International conference on machine learning, PMLR, 2016, pp.
1050–1059.
[79]
Y.
Gao et al., “Machine learning based early warning system
enables accurate mortality risk prediction for COVID-19,”
Nature communications, vol. 11, no. 1, p. 5033, 2020, doi: 10.5281/zenodo.3991113.
[80]
T.
Gebru et al., “Datasheets for datasets,”
Communications of the ACM, vol. 64, no. 12, pp. 86–92, 2021,
doi: 10.1145/3458723.
[81]
B.
Ghai, Q. V. Liao, Y. Zhang, R. Bellamy, and K. Mueller,
“Explainable active learning (xal) toward ai explanations as
interfaces for machine teachers,” Proceedings of the ACM on
Human-Computer Interaction, vol. 4, no. CSCW3, pp. 1–28, 2021, doi:
10.1145/3432934.
[82]
J.
B. Gibbons et al., “Association between vitamin d
supplementation and COVID-19 infection and mortality,”
Scientific Reports, vol. 12, no. 1, p. 19397, 2022, doi: 10.1038/s41598-022-24053-4.
[83]
L.
S. Gottfredson, “The general intelligence factor.”
Scientific American, Incorporated, 1998.
[84]
I.
Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT
press, 2016.
[85]
A.
Goldstein, A. Kapelner, J. Bleich, and E. Pitkin, “Peeking
Inside the Black Box: Visualizing
Statistical Learning With Plots of Individual Conditional
Expectation,” Journal of Computational and Graphical
Statistics, vol. 24, no. 1, pp. 44–65, Jan. 2015, doi: 10.1080/10618600.2014.907095.
[86]
Y.
Gong and G. Zhao, “Wealth, health, and beyond: Is COVID-19 less
likely to spread in rich neighborhoods?” Plos one, vol.
17, no. 5, p. e0267487, 2022, doi: 10.1371%2Fjournal.pone.0267487.
[87]
I.
Goodfellow et al., “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27,
2014.
[88]
I.
J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” arXiv preprint
arXiv:1412.6572, 2014, doi: 10.48550/arXiv.1412.6572.
[89]
J.
Goschenhofer, F. M. Pfister, K. A. Yuksel, B. Bischl, U. Fietzek, and J.
Thomas, “Wearable-based parkinson’s disease severity monitoring
using deep learning,” in Machine learning and knowledge
discovery in databases: European conference, ECML PKDD 2019,
würzburg, germany, september 16–20, 2019, proceedings, part
III, Springer, 2020, pp. 400–415. doi: 10.1007/978-3-030-46133-1_24.
[90]
C.
Gruber, P. O. Schenk, M. Schierholz, F. Kreuter, and G. Kauermann,
“Sources of Uncertainty in Machine
Learning – A Statisticians’
View.” arXiv, May 2023. doi: 10.48550/arXiv.2305.16703.
[91]
M.
Gupta et al., “CryoEM and AI reveal a structure of
SARS-CoV-2 Nsp2, a multifunctional protein involved in key host
processes.” Research Square, 2021, doi: 10.1101/2021.05.10.443524.
[92]
P.
J. Haley and D. Soloway, “Extrapolation limitations of multilayer
feedforward neural networks,” in [Proceedings 1992] IJCNN
international joint conference on neural networks, IEEE, 1992, pp.
25–30. doi: 10.1109/IJCNN.1992.227294.
[93]
P.
R. Halmos, Measure theory, vol. 18. Springer, 2013. doi: 10.1007/978-1-4684-9440-2.
[94]
S.
Han, C. Lin, C. Shen, Q. Wang, and X. Guan, “Interpreting
adversarial examples in deep learning: A review,” ACM
Computing Surveys, vol. 55, no. 14s, pp. 1–38, 2023, doi: 10.1145/3594869.
[95]
M.
Hardt and B. Recht, Patterns, predictions, and actions: Foundations
of machine learning. Princeton University Press, 2022.
[96]
U.
Hasson, S. A. Nastase, and A. Goldstein, “Direct fit to nature: An
evolutionary perspective on biological and artificial neural
networks,” Neuron, vol. 105, no. 3, pp. 416–434, 2020,
doi: 10.1016/j.neuron.2019.12.002.
[97]
T.
Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The
elements of statistical learning: Data mining, inference, and
prediction, vol. 2. Springer, 2009.
[98]
Y.-H. He, “Machine-learning the string
landscape,” Physics Letters B, vol. 774, pp. 564–568,
2017, doi: 10.1016/j.physletb.2017.10.024.
[99]
D.
Hendrycks et al., “The many faces of robustness: A
critical analysis of out-of-distribution generalization,” in
Proceedings of the IEEE/CVF international conference on computer
vision, 2021, pp. 8340–8349. doi: 10.1109/ICCV48922.2021.00823.
[100]
B. Hofner, A. Mayr, N. Robinzonov, and M.
Schmid, “Model-based boosting in r: A hands-on tutorial using the
r package mboost,” Computational statistics, vol. 29,
pp. 3–35, 2014, doi: 10.1007/s00180-012-0382-5.
[101]
S. Hoffmann, F. Schönbrodt, R. Elsas, R.
Wilson, U. Strasser, and A.-L. Boulesteix, “The multiplicity of
analysis strategies jeopardizes replicability: Lessons learned across
disciplines,” Royal Society Open Science, vol. 8, no. 4,
p. 201925, 2021, doi: 10.1098/rsos.201925.
[102]
P. W. Holland, “Statistics and causal
inference,” Journal of the American statistical
Association, vol. 81, no. 396, pp. 945–960, 1986, doi: 10.2307/2289064.
[103]
K. Hornik, “Approximation capabilities of
multilayer feedforward networks,” Neural networks, vol.
4, no. 2, pp. 251–257, 1991, doi: 10.1016/0893-6080(91)90009-T.
[104]
J. Howard et al., “An evidence
review of face masks against COVID-19,” Proceedings of the
National Academy of Sciences, vol. 118, no. 4, p. e2014564118,
2021, doi: 10.1073/pnas.2014564118.
[105]
W. Hu et al., “Open graph
benchmark: Datasets for machine learning on graphs,” Advances
in neural information processing systems, vol. 33, pp. 22118–22133,
2020, doi: doi/10.5555/3495724.3497579.
[106]
S. Hu et al., “Weakly supervised
deep learning for covid-19 infection detection and classification from
ct images,” IEEE Access, vol. 8, pp. 118869–118883,
2020, doi: 10.1109/access.2020.3005510.
[107]
E. Hüllermeier and W. Waegeman,
“Aleatoric and epistemic uncertainty in machine learning: An
introduction to concepts and methods,” Machine Learning,
vol. 110, no. 3, pp. 457–506, Mar. 2021, doi: 10.1007/s10994-021-05946-3.
[108]
F. Hutter, L. Kotthoff, and J. Vanschoren,
Automated machine learning: Methods, systems, challenges.
Springer Nature, 2019. doi: 10.1007/978-3-030-05318-5.
[109]
I. London, “Encoding cyclical continuous
features - 24-hour time,” Ian London’s Blog. Jul. 2016.
Accessed: Sep. 27, 2023. [Online]. Available: https://ianlondon.github.io/posts/encoding-cyclical-features-24-hour-time/
[110]
A. Ilyas, S. Santurkar, D. Tsipras, L.
Engstrom, B. Tran, and A. Madry, “Adversarial examples are not
bugs, they are features,” Advances in neural information
processing systems, vol. 32, 2019.
[111]
P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros,
“Image-to-image translation with conditional adversarial
networks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 1125–1134. doi: 10.1109/CVPR.2017.632.
[112]
B. Jalaian, M. Lee, and S. Russell,
“Uncertain context: Uncertainty quantification in machine
learning,” AI Magazine, vol. 40, no. 4, pp. 40–49, 2019,
doi: 10.1609/aimag.v40i4.4812
.
[113]
L. Jehi et al., “Individualizing
risk prediction for positive coronavirus disease 2019 testing: Results
from 11,672 patients,” Chest, vol. 158, no. 4, pp.
1364–1375, 2020, doi: 10.1016/j.chest.2020.05.580.
[114]
J. Jumper et al., “Highly
accurate protein structure prediction with AlphaFold,”
Nature, vol. 596, no. 7873, pp. 583–589, 2021, doi: 10.1038/s41586-021-03819-2.
[115]
M. Kalisch, M. Mächler, D. Colombo, M. H.
Maathuis, and P. Bühlmann, “Causal inference using graphical
models with the r package pcalg,” Journal of statistical
software, vol. 47, pp. 1–26, 2012, doi: 10.18637/jss.v047.i11.
[116]
P. Kamath, A. Tangella, D. Sutherland, and N.
Srebro, “Does invariant risk minimization capture
invariance?” in International conference on artificial
intelligence and statistics, PMLR, 2021, pp. 4069–4077.
[117]
S. Kapoor et al.,
“REFORMS: Consensus-based
Recommendations for Machine-learning-based
Science,” Science Advances, vol. 10, no.
18, p. eadk3452, May 2024, doi: 10.1126/sciadv.adk3452.
[118]
E. Kasneci et al., “ChatGPT for
good? On opportunities and challenges of large language models for
education,” Learning and individual differences, vol.
103, p. 102274, 2023.
[119]
A. J. Kell, D. L. Yamins, E. N. Shook, S. V.
Norman-Haignere, and J. H. McDermott, “A task-optimized neural
network replicates human auditory behavior, predicts brain responses,
and reveals a cortical processing hierarchy,” Neuron,
vol. 98, no. 3, pp. 630–644, 2018, doi: 10.1016/j.neuron.2018.03.044.
[120]
A. Kendall and Y. Gal, “What
uncertainties do we need in bayesian deep learning for computer
vision?” Advances in neural information processing
systems, vol. 30, 2017.
[121]
J. Kim and V. Pavlovic, “Ancient coin
recognition based on spatial coding,” in 2014 22nd
international conference on pattern recognition, 2014, pp. 321–326.
doi: 10.1109/ICPR.2014.64.
[122]
M. C. Knaus, “Double machine
learning-based programme evaluation under unconfoundedness,”
The Econometrics Journal, vol. 25, no. 3, pp. 602–627, Jun.
2022, doi: 10.1093/ectj/utac015.
[123]
D. Kobak, R. G. Márquez, E.-Á. Horvát, and J.
Lause, “Delving into ChatGPT usage in academic writing through
excess vocabulary,” arXiv preprint arXiv:2406.07016,
2024.
[124]
P. W. Koh et al., “Concept
bottleneck models,” in International conference on machine
learning, PMLR, 2020, pp. 5338–5348.
[125]
G. König, T. Freiesleben, and M.
Grosse-Wentrup, “Improvement-focused causal recourse
(ICR),” in Proceedings of the AAAI conference on artificial
intelligence, 2023, pp. 11847–11855. doi: 10.1609/aaai.v37i10.26398.
[126]
M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz,
and A. Zeilinger, “Automated search for new quantum
experiments,” Physical review letters, vol. 116, no. 9,
p. 090405, 2016.
[127]
T. S. Kuhn, The structure of scientific
revolutions, vol. 962. University of Chicago press Chicago,
1997.
[128]
S. R. Künzel, J. S. Sekhon, P. J. Bickel, and
B. Yu, “Metalearners for estimating heterogeneous treatment
effects using machine learning,” Proceedings of the national
academy of sciences, vol. 116, no. 10, pp. 4156–4165, 2019, doi: 10.1073/pnas.1804597116.
[129]
R. Lagerquist, A. McGovern, C. R. Homeyer, D.
J. Gagne II, and T. Smith, “Deep learning on three-dimensional
multiscale data for next-hour tornado prediction,” Monthly
Weather Review, vol. 148, no. 7, pp. 2837–2861, 2020, doi: 10.1175/MWR-D-19-0372.1.
[130]
R. Lam et al., “Learning
skillful medium-range global weather forecasting,”
Science, p. eadi2336, 2023, doi: 10.1126/science.adi2336.
[131]
J. Lei, M. G’Sell, A. Rinaldo, R. J.
Tibshirani, and L. Wasserman, “Distribution-Free Predictive
Inference for Regression,” Journal of the
American Statistical Association, vol. 113, no. 523, pp. 1094–1111,
Jul. 2018, doi: 10.1080/01621459.2017.1307116.
[132]
L. Lei and E. J. Candès, “Conformal
inference of counterfactuals and individual treatment effects,”
Journal of the Royal Statistical Society Series B: Statistical
Methodology, vol. 83, no. 5, pp. 911–938, 2021, doi: 10.1111/rssb.12445.
[133]
S. Letzgus and K.-R. Müller, “An
explainable AI framework for robust and transparent
data-driven wind turbine power curve models,” Energy and
AI, p. 100328, Dec. 2023, doi: 10.1016/j.egyai.2023.100328.
[134]
Z. C. Lipton, “The Mythos of
Model Interpretability.” arXiv, Mar.
2017. doi: 10.48550/arXiv.1606.03490.
[135]
C. List, “Levels: Descriptive,
explanatory, and ontological,” Noûs, vol.
53, no. 4, pp. 852–883, 2019.
[136]
Y. Lu and J. Lu, “A universal
approximation theorem of deep neural networks for expressing probability
distributions,” Advances in neural information processing
systems, vol. 33, pp. 3094–3105, 2020, doi: 10.5555/3495724.3495984.
[137]
T. C. Lucas, “A translucent box:
Interpretable machine learning in ecology,” Ecological
Monographs, vol. 90, no. 4, p. e01422, 2020, doi: 10.1002/ecm.1422.
[138]
S. M. Lundberg and S.-I. Lee, “A unified
approach to interpreting model predictions,” in Proceedings
of the 31st International Conference on Neural
Information Processing Systems, in NIPS’17.
Red Hook, NY, USA: Curran Associates Inc.,
Dec. 2017, pp. 4768–4777. doi: 10.5555/3295222.3295230.
[139]
K. Maaz et al., Bildung in
deutschland 2022: Ein indikatorengestützter bericht mit
einer analyse zum bildungspersonal. wbv Publikation, 2022. doi: 10.3278/6001820hw.
[140]
G. Marcus, “The next decade in AI: Four
steps towards robust artificial intelligence,” arXiv preprint
arXiv:2002.06177, 2020, doi: 10.48550/arXiv.2002.06177.
[141]
C. F. Manski, Partial identification of
probability distributions, vol. 5. Springer, 2003. doi: 10.1007/b97478.
[142]
P. Maurage, A. Heeren, and M. Pesenti,
“Does chocolate consumption really boost nobel award chances? The
peril of over-interpreting correlations in health studies,”
The Journal of Nutrition, vol. 143, no. 6, pp. 931–933, 2013,
doi: 10.3945/jn.113.174813.
[143]
M. B. McDermott, S. Wang, N. Marinsek, R.
Ranganath, L. Foschini, and M. Ghassemi, “Reproducibility in
machine learning for health research: Still a ways to go,”
Science Translational Medicine, vol. 13, no. 586, p. eabb1655,
2021, doi: 10.1126/scitranslmed.abb1655.
[144]
L. Mentch and G. Hooker, “Quantifying
uncertainty in random forests via confidence intervals and hypothesis
tests,” Journal of Machine Learning Research, vol. 17,
no. 26, pp. 1–41, 2016.
[145]
T. Miller, “Explanation in artificial
intelligence: Insights from the social sciences,”
Artificial Intelligence, vol. 267, pp. 1–38, Feb. 2019, doi: 10.1016/j.artint.2018.07.007.
[146]
M. Mitchell et al., “Model
Cards for Model
Reporting,” in Proceedings of the
Conference on Fairness,
Accountability, and Transparency, in
FAT* ’19. New York, NY, USA: Association for Computing
Machinery, Jan. 2019, pp. 220–229. doi: 10.1145/3287560.3287596.
[147]
C. Molnar, G. Casalicchio, and B. Bischl,
“Quantifying model complexity via functional decomposition for
better post-hoc interpretability,” in Machine learning and
knowledge discovery in databases: International workshops of ECML PKDD
2019, würzburg, germany, september 16–20, 2019,
proceedings, part i, Springer, 2020, pp. 193–204. doi: 10.1007/978-3-030-43823-4_17.
[148]
C. Molnar, Interpretable machine learning:
A guide for making black box models explainable, 2nd ed. 2022.
Available: https://christophm.github.io/interpretable-ml-book
[149]
C. Molnar, G. König, B. Bischl, and G.
Casalicchio, “Model-agnostic Feature Importance and
Effects with Dependent Features – A
Conditional Subgroup Approach,” Data Mining and
Knowledge Discovery, Jan. 2023, doi: 10.1007/s10618-022-00901-9.
[150]
C. Molnar et al., “Relating
the Partial Dependence Plot and Permutation Feature
Importance to the Data Generating Process,”
in Explainable Artificial Intelligence, L. Longo,
Ed., in Communications in Computer and Information
Science. Cham: Springer Nature
Switzerland, 2023, pp. 456–479. doi: 10.1007/978-3-031-44064-9_24.
[151]
M. Moor et al., “Foundation
models for generalist medical artificial intelligence,”
Nature, vol. 616, no. 7956, pp. 259–265, 2023.
[152]
A. Mumuni and F. Mumuni, “CNN
architectures for geometric transformation-invariant feature
representation in computer vision: A review,” SN Computer
Science, vol. 2, no. 5, p. 340, 2021, doi: 10.1007/s42979-021-00735-0.
[153]
A. Mumuni and F. Mumuni, “Data
augmentation: A comprehensive survey of modern approaches,”
Array, vol. 16, p. 100258, 2022, doi: 10.1016/j.array.2022.100258.
[154]
C. Nadeau and Y. Bengio, “Inference for
the generalization error,” Advances in neural information
processing systems, vol. 12, 1999.
[155]
B. Neal, “Introduction to causal
inference,” Course Lecture Notes (draft), 2020.
[156]
M. Neethu and R. Rajasree, “Sentiment
analysis in twitter using machine learning techniques,” in
2013 fourth international conference on computing, communications
and networking technologies (ICCCNT), IEEE, 2013, pp. 1–5. doi: 10.1109/ICCCNT.2013.6726818.
[157]
T. Neupert, M. H. Fischer, E. Greplova, K.
Choo, and M. M. Denner, “Introduction to machine learning for the
sciences,” arXiv preprint arXiv:2102.04883, 2021, doi:
10.48550/arXiv.2102.04883.
[158]
A. Nguyen and M. R. Martı́nez,
“MonoNet: Towards Interpretable Models
by Learning Monotonic Features.” arXiv,
Sep. 2019. doi: 10.48550/arXiv.1909.13611.
[159]
M. S. Norouzzadeh et al.,
“Automatically identifying, counting, and describing wild animals
in camera-trap images with deep learning,” Proceedings of the
National Academy of Sciences, vol. 115, no. 25, pp. E5716–E5725,
2018, doi: 10.1073/pnas.1719367115.
[160]
T. Oikarinen et al., “Deep
convolutional network for animal sound classification and source
attribution using dual audio recordings,” The Journal of the
Acoustical Society of America, vol. 145, no. 2, pp. 654–662, 2019,
doi: 10.1121/1.5097583.
[161]
O. S. Collaboration, “Estimating the
reproducibility of psychological science,” Science, vol.
349, no. 6251, p. aac4716, 2015, doi: 10.1126/science.aac4716.
[162]
E. Ozoani, M. Gerchick, and M. Mitchell,
Model card guidebook. Hugging Face, 2022. Available: https://huggingface.co/docs/hub/en/model-card-guidebook
[163]
J. Pearl and D. Mackenzie, The book of why:
The new science of cause and effect. Basic books, 2018.
[164]
J. Pearl, Causality. Cambridge
university press, 2009.
[165]
J. Pearl, “The limitations of opaque
learning machines,” Possible minds, vol. 25, pp. 13–19,
2019.
[166]
N. Papernot, P. McDaniel, and I. Goodfellow,
“Transferability in machine learning: From phenomena to black-box
attacks using adversarial samples,” arXiv preprint
arXiv:1605.07277, 2016, doi: 10.48550/arXiv.1605.07277.
[167]
M. A. Pedersen, “Editorial introduction:
Towards a machinic anthropology,” Big Data &
Society, vol. 10. SAGE Publications Sage UK: London, England, p.
20539517231153803, 2023. doi: 10.1177/20539517231153803.
[168]
J. Pereira, A. J. Simpkin, M. D. Hartmann, D.
J. Rigden, R. M. Keegan, and A. N. Lupas, “High-accuracy protein
structure prediction in CASP14,” Proteins: Structure,
Function, and Bioinformatics, vol. 89, no. 12, pp. 1687–1699, 2021,
doi: 10.1002/prot.26171.
[169]
G. L. Perry, R. Seidl, A. M. Bellvé, and W.
Rammer, “An outlook for deep learning in ecosystem
science,” Ecosystems, pp. 1–19, 2022, doi: 10.1007/s10021-022-00789-y.
[170]
J. Peters, D. Janzing, and B. Schölkopf,
Elements of causal inference: Foundations and learning
algorithms. The MIT Press, 2017.
[171]
F. Pfisterer, S. Coors, J. Thomas, and B.
Bischl, “Multi-objective automatic machine learning with
autoxgboostmc,” arXiv preprint arXiv:1908.10796, 2019,
doi: 10.48550/arXiv.1908.10796.
[172]
J. Platt et al., “Probabilistic
outputs for support vector machines and comparisons to regularized
likelihood methods,” Advances in large margin
classifiers, vol. 10, no. 3, pp. 61–74, 1999.
[173]
K. Popper, The logic of scientific
discovery. Routledge, 2005.
[174]
Z. Pu and E. Kalnay, “Numerical weather
prediction basics: Models, numerical methods, and data
assimilation,” Handbook of hydrometeorological ensemble
forecasting, pp. 67–97, 2019.
[175]
M. Raissi, P. Perdikaris, and G. E.
Karniadakis, “Physics Informed Deep
Learning (Part I):
Data-driven Solutions of
Nonlinear Partial Differential
Equations.” arXiv, Nov. 2017. doi: 10.48550/arXiv.1711.10561.
[176]
M. Raissi, P. Perdikaris, and G. E.
Karniadakis, “Physics Informed Deep
Learning (Part II):
Data-driven Discovery of
Nonlinear Partial Differential
Equations.” arXiv, Nov. 2017. doi: 10.48550/arXiv.1711.10566.
[177]
P. Rajpurkar et al.,
“CheXNet: Radiologist-Level
Pneumonia Detection on Chest
X-Rays with Deep
Learning.” arXiv, Dec. 2017. doi: 10.48550/arXiv.1711.05225.
[178]
S.-A. Rebuffi, S. Gowal, D. A. Calian, F.
Stimberg, O. Wiles, and T. A. Mann, “Data augmentation can improve
robustness,” Advances in Neural Information Processing
Systems, vol. 34, pp. 29935–29948, 2021, doi: 10.48550/arXiv.2111.05328.
[179]
M. Reichstein et al., “Deep
learning and process understanding for data-driven earth system
science,” Nature, vol. 566, no. 7743, pp. 195–204, 2019,
doi: 10.1038/s41586-019-0912-1.
[180]
P. Ren et al., “A survey of deep
active learning,” ACM computing surveys (CSUR), vol. 54,
no. 9, pp. 1–40, 2021, doi: 10.1145/3472291.
[181]
X. Ren et al., “Deep
learning-based weather prediction: A survey,” Big Data
Research, vol. 23, p. 100178, 2021, doi: 10.1016/j.bdr.2020.100178.
[182]
M. T. Ribeiro, S. Singh, and C. Guestrin,
“Anchors: High-Precision Model-Agnostic
Explanations,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32, no. 1, Apr. 2018, doi: 10.1609/aaai.v32i1.11491.
[183]
M. T. Ribeiro, S. Singh, and C. Guestrin,
“"Why Should I Trust You?": Explaining
the Predictions of Any Classifier,” in
Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining, in KDD ’16. New York, NY,
USA: Association for Computing Machinery, Aug. 2016,
pp. 1135–1144. doi: 10.1145/2939672.2939778.
[184]
M. Roberts et al., “Common
pitfalls and recommendations for using machine learning to detect and
prognosticate for COVID-19 using chest radiographs and CT scans,”
Nature Machine Intelligence, vol. 3, no. 3, pp. 199–217, 2021,
doi: 10.1038/s42256-021-00307-0.
[185]
J. W. Rocks and P. Mehta, “Memorizing
without overfitting: Bias, variance, and interpolation in
overparameterized models,” Physical review research,
vol. 4, no. 1, p. 013201, 2022, doi: 10.1103/PhysRevResearch.4.013201.
[186]
Y. Romano, E. Patterson, and E. Candes,
“Conformalized quantile regression,” Advances in neural
information processing systems, vol. 32, 2019.
[187]
Y. Romano, M. Sesia, and E. Candes,
“Classification with valid and adaptive coverage,”
Advances in Neural Information Processing Systems, vol. 33, pp.
3581–3591, 2020.
[188]
R. Roscher, B. Bohn, M. F. Duarte, and J.
Garcke, “Explainable Machine Learning for
Scientific Insights and Discoveries,”
IEEE Access, vol. 8, pp. 42200–42216, 2020, doi: 10.1109/ACCESS.2020.2976199.
[189]
J. Rothfuss, F. Ferreira, S. Walther, and M.
Ulrich, “Conditional density estimation with neural networks: Best
practices and benchmarks,” arXiv preprint
arXiv:1903.00954, 2019, doi: 10.48550/arXiv.1903.00954.
[190]
C. Rudin, C. Chen, Z. Chen, H. Huang, L.
Semenova, and C. Zhong, “Interpretable machine learning:
Fundamental principles and 10 grand challenges,”
Statistics Surveys, vol. 16, no. none, pp. 1–85, Jan. 2022,
doi: 10.1214/21-SS133.
[191]
L. Ruff et al., “A unifying
review of deep and shallow anomaly detection,” Proceedings of
the IEEE, vol. 109, no. 5, pp. 756–795, 2021, doi: 10.1109/JPROC.2021.3052449.
[192]
R. Schaeffer et al., “Double
Descent Demystified: Identifying,
Interpreting & Ablating the
Sources of a Deep Learning
Puzzle.” arXiv, Mar. 2023. doi: 10.48550/arXiv.2303.14151.
[193]
J. Schmidt, M. R. Marques, S. Botti, and M. A.
Marques, “Recent advances and applications of machine learning in
solid-state materials science,” npj Computational
Materials, vol. 5, no. 1, pp. 1–36, 2019, doi: 10.1038/s41524-019-0221-0.
[194]
C. A. Scholbeck, C. Molnar, C. Heumann, B.
Bischl, and G. Casalicchio, “Sampling, Intervention,
Prediction, Aggregation: A
Generalized Framework for
Model-Agnostic
Interpretations,” in Machine
Learning and Knowledge Discovery
in Databases, P. Cellier and K. Driessens, Eds., in
Communications in Computer and Information
Science. Cham: Springer International Publishing, 2020, pp.
205–216. doi: 10.1007/978-3-030-43823-4_18.
[195]
B. Schölkopf, D. Janzing, J. Peters, E.
Sgouritsa, K. Zhang, and J. Mooij, “On causal and anticausal
learning,” arXiv preprint arXiv:1206.6471, 2012, doi: 10.48550/arXiv.1206.6471.
[196]
B. Schölkopf et al., “Toward
causal representation learning,” Proceedings of the
IEEE, vol. 109, no. 5, pp. 612–634, 2021, doi: 10.1109/JPROC.2021.3058954.
[197]
B. Schölkopf, “Causality for machine
learning,” in Probabilistic and causal inference: The works
of judea pearl, 2022, pp. 765–804.
[198]
H. Seibold, 6 steps towards reproducible
research. Zenodo, 2024. doi: 10.5281/zenodo.12744715.
[199]
R. Sen, A. T. Suresh, K. Shanmugam, A. G.
Dimakis, and S. Shakkottai, “Model-powered conditional
independence test,” Advances in neural information processing
systems, vol. 30, 2017, doi: 10.5555/3294996.3295055.
[200]
L. Semenova, H. Chen, R. Parr, and C. Rudin,
“A path to simpler models starts with noise,” Advances
in neural information processing systems, vol. 36, 2024.
[201]
B. Settles, “Active learning literature
survey,” University of Wisconsin–Madison, Computer Sciences
Technical Report 1648, 2009.
[202]
S. Shalev-Shwartz and S. Ben-David,
Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014. doi: 10.1017/CBO9781107298019.
[203]
R. D. Shah and J. Peters, “The hardness
of conditional independence testing and the generalised covariance
measure,” The Annals of Statistics, vol. 48, no. 3, pp.
1514–1538, 2020, doi: 10.1214/19-AOS1857.
[204]
C. Shorten and T. M. Khoshgoftaar, “A
survey on image data augmentation for deep learning,” Journal
of big data, vol. 6, no. 1, pp. 1–48, 2019, doi: 10.1186/s40537-019-0197-0.
[205]
P. Spirtes, C. N. Glymour, and R. Scheines,
Causation, prediction, and search. MIT press, 2000. doi: 10.1007/978-1-4612-2748-9.
[206]
R. Frigg and S. Hartmann, “Models in Science,” in The
Stanford encyclopedia of philosophy,
Spring 2020., E. N. Zalta, Ed., https://plato.stanford.edu/archives/spr2020/entries/models-science/;
Metaphysics Research Lab, Stanford University, 2020.
[207]
C. Hitchcock and M. Rédei, “Reichenbach’s Common Cause Principle,” in
The Stanford encyclopedia of philosophy,
Summer 2021., E. N. Zalta, Ed., https://plato.stanford.edu/archives/sum2021/entries/physics-Rpcc/;
Metaphysics Research Lab, Stanford University, 2021.
[208]
A. Chakravartty, “Scientific
Realism,” in The Stanford encyclopedia of
philosophy, Summer 2017., E. N. Zalta, Ed., https://plato.stanford.edu/archives/sum2017/entries/scientific-realism/;
Metaphysics Research Lab, Stanford University, 2017.
[209]
G. Shmueli, “To
Explain or to Predict?” Statistical Science, vol.
25, no. 3, pp. 289–310, 2010, doi: 10.1214/10-STS330.
[210]
T. F. Sterkenburg and P. D. Grünwald,
“The no-free-lunch theorems of supervised learning,”
Synthese, vol. 199, no. 3, pp. 9979–10015, 2021, doi: 10.1007/s11229-021-03233-1.
[211]
C. Strobl, A.-L. Boulesteix, T. Kneib, T.
Augustin, and A. Zeileis, “Conditional variable importance for
random forests,” BMC bioinformatics, vol. 9, pp. 1–11,
2008.
[212]
E. Štrumbelj and I. Kononenko,
“Explaining prediction models and individual predictions with
feature contributions,” Knowledge and Information
Systems, vol. 41, no. 3, pp. 647–665, Dec. 2014, doi: 10.1007/s10115-013-0679-x.
[213]
S. L. Smith, B. Dherin, D. G. Barrett, and S.
De, “On the origin of implicit regularization in stochastic
gradient descent,” arXiv preprint arXiv:2101.12176,
2021, doi: 10.48550/arXiv.2101.12176.
[214]
A. Swanson, M. Kosmala, C. Lintott, R. Simpson,
A. Smith, and C. Packer, “Snapshot serengeti, high-frequency
annotated camera trap images of 40 mammalian species in an african
savanna,” Scientific data, vol. 2, no. 1, pp. 1–14,
2015, doi: 10.1038/sdata.2015.26.
[215]
C. Szegedy et al., “Intriguing
properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013, doi: 10.48550/arXiv.1312.6199.
[216]
I. Takeuchi, Q. V. Le, T. D. Sears, A. J.
Smola, and C. Williams, “Nonparametric quantile
estimation.” Journal of machine learning research, vol.
7, no. 7, 2006.
[217]
N. Taleb, “The black swan: Why don’t we
learn that we don’t learn,” NY: Random House, vol. 1145,
2005.
[218]
Y.-P. Tang, G.-X. Li, and S.-J. Huang,
“ALiPy: Active learning in python,” arXiv preprint
arXiv:1901.03802, 2019, doi: 10.48550/arXiv.1901.03802.
[219]
T. Tanay and L. Griffin, “A boundary
tilting persepective on the phenomenon of adversarial examples,”
arXiv preprint arXiv:1608.07690, 2016, doi: 10.48550/arXiv.1608.07690.
[220]
A. S. Tejani et al., “Checklist
for Artificial Intelligence in
Medical Imaging (CLAIM): 2024
Update,” Radiology: Artificial
Intelligence, vol. 6, no. 4, p. e240300, Jul. 2024, doi: 10.1148/ryai.240300.
[221]
D. Tsipras, S. Santurkar, L. Engstrom, A.
Turner, and A. Madry, “Robustness may be at odds with
accuracy,” arXiv preprint arXiv:1805.12152, 2018, doi:
10.48550/arXiv.1805.12152.
[222]
J. Q. Toledo-Marı́n, G. Fox, J. P. Sluka, and J.
A. Glazier, “Deep learning approaches to surrogates for solving
the diffusion equation for mechanistic real-world simulations,”
Frontiers in Physiology, vol. 12, p. 667828, 2021, doi: 10.3389/fphys.2021.667828.
[223]
C. Uhler, G. Raskutti, P. Bühlmann, and B. Yu,
“Geometry of the faithfulness assumption in causal
inference,” The Annals of Statistics, pp. 436–463,
2013.
[224]
M. J. Van der Laan and S. Rose, Targeted
learning, vol. 1. Springer, 2011. doi: 10.1007/978-1-4419-9782-1.
[225]
R. Van Noorden and J. M. Perkel,
“AI and science: What 1,600 researchers
think,” Nature, vol. 621, no. 7980, pp. 672–675, Sep.
2023, doi: 10.1038/d41586-023-02980-0.
[226]
V. N. Vapnik, “An overview of statistical
learning theory,” IEEE transactions on neural networks,
vol. 10, no. 5, pp. 988–999, 1999, doi: 10.1109/72.788640.
[227]
C. Vens, J. Struyf, L. Schietgat, S. Džeroski,
and H. Blockeel, “Decision trees for hierarchical multi-label
classification,” Machine learning, vol. 73, pp. 185–214,
2008, doi: 10.1007/s10994-008-5077-3.
[228]
T. Vigen, Spurious correlations.
Hachette UK, 2015.
[229]
V. Vovk, G. Shafer, and I. Nouretdinov,
“Self-calibrating probability forecasting,” Advances in
neural information processing systems, vol. 16, 2003.
[230]
S. Wachter, B. Mittelstadt, and C. Russell,
“Counterfactual Explanations Without Opening the
Black Box: Automated Decisions and the
GDPR,” SSRN Electronic Journal, 2017, doi:
10.2139/ssrn.3063289.
[231]
S. Wang et al., “Defensive
dropout for hardening deep neural networks under adversarial
attacks,” in 2018 IEEE/ACM international conference on
computer-aided design (ICCAD), IEEE, 2018, pp. 1–8. doi: 10.1145/3240765.3264699.
[232]
D. S. Watson and M. N. Wright, “Testing
conditional independence in supervised learning algorithms,”
Machine Learning, vol. 110, no. 8, pp. 2107–2129, Aug. 2021,
doi: 10.1007/s10994-021-06030-6.
[233]
D. H. Wolpert, “The lack of a priori
distinctions between learning algorithms,” Neural
computation, vol. 8, no. 7, pp. 1341–1390, 1996, doi: 10.1162/neco.1996.8.7.1341.
[234]
Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and
S. Y. Philip, “A comprehensive survey on graph neural
networks,” IEEE transactions on neural networks and learning
systems, vol. 32, no. 1, pp. 4–24, 2020, doi: 10.1109/TNNLS.2020.2978386.
[235]
L. Wynants et al., “Prediction
models for diagnosis and prognosis of covid-19: Systematic review and
critical appraisal,” BMJ (Clinical research ed.), vol.
369, p. m1328, Apr. 2020, doi: 10.1136/bmj.m1328.
[236]
J. Yang, K. Zhou, Y. Li, and Z. Liu,
“Generalized Out-of-Distribution
Detection: A Survey,”
International Journal of Computer Vision, Jun. 2024, doi: 10.1007/s11263-024-02117-4.
[237]
J. Yoon, J. Jordon, and M. Van Der Schaar,
“GANITE: Estimation of individualized treatment effects using
generative adversarial nets,” in International conference on
learning representations, 2018.
[238]
K. Yu et al., “Causality-based
feature selection: Methods and evaluations,” ACM Computing
Surveys (CSUR), vol. 53, no. 5, pp. 1–36, 2020, doi: 10.1145/3409382.
[239]
A. Zeileis, T. Hothorn, and K. Hornik,
“Model-Based Recursive Partitioning,”
Journal of Computational and Graphical Statistics, vol. 17, no.
2, pp. 492–514, Jun. 2008, doi: 10.1198/106186008X319331.
[240]
Z. Zhang, Y. Jin, B. Chen, and P. Brown,
“California almond yield prediction at the orchard level with a
machine learning approach,” Frontiers in plant science,
vol. 10, p. 809, 2019, doi: 10.3389/fpls.2019.00809/full.
[241]
H. Zhang, H. Chen, Z. Song, D. Boning, I. S.
Dhillon, and C.-J. Hsieh, “The limitations of adversarial training
and the blind-spot attack,” arXiv preprint
arXiv:1901.04684, 2019, doi: 10.48550/arXiv.1901.04684.